The higher order fractional Calderón problem for linear local operators: Uniqueness
نویسندگان
چکیده
We study an inverse problem for the fractional Schr\"odinger equation (FSE) with a local perturbation by linear partial differential operator (PDO) of order smaller than Laplacian. show that one can uniquely recover coefficients PDO from Dirichlet-to-Neumann (DN) map associated to perturbed FSE. This is proved two classes coefficients: which belong certain spaces Sobolev multipliers and bounded derivatives. Our generalizes recent results zeroth first perturbations higher perturbations.
منابع مشابه
On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales
n this paper, at first the concept of Caputo fractionalderivative is generalized on time scales. Then the fractional orderdifferential equations are introduced on time scales. Finally,sufficient and necessary conditions are presented for the existenceand uniqueness of solution of initial valueproblem including fractional order differential equations.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولLinear Interpolation for the Higher-Order Matching Problem
3 The matching problem and the interpolation problem 7 4 Decidability of a fragment of the fth order interpolation problem 9 4. Abstract We present here a particular case of the higher order matching problem | the linear interpolation problem. The problem consists in solving a collection of higher order matching equations of the shape xM 1 : : : M k = N , where x is the only unknown quantity. W...
متن کاملAn Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order
We obtain approximation formulas for fractional integrals and derivatives of Riemann-Liouville and Marchaud types with a variable fractional order. The approximations involve integer-order derivatives only. An estimation for the error is given. The efficiency of the approximation method is illustrated with examples. As applications, we show how the obtained results are useful to solve different...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2022
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2022.108246